Pulsation Mechanisms

~Michael Scholz
University of Heidelberg

2000 Michelson Summer School - U.C. Berkeley




= Y OMV‘ = o~ A
D |/‘0 = Lf e Ve %o 5% Lf'u, ! i
9 pe 2 . M. 2p g-(JG_MV‘ ’Qi(_\)
(a V\o e r\oz- ’t) v lAZ ra tZ
N A Prod ¥ = ’RTg//I, + obS [3c +
Ml" (t,l"°> = Mr'\o (‘Ao>
" (t)t"3 = "Ny ( 1 + g(b) po))
g (E,r) = 2un)y (1+7(tn)
P, r) T () (13 ()
20,5 =1
& | 2 ¢ Mu 4 R
__ol‘____fz— r\?lo (Lf§,+§>;[+?o(1+2§)g —O
l"\
(p/po) = (375,01
;_A_@:P\ = l“; __@—“P\ _ I"Z JCAT_: r‘x"( l"z 3 111
d&\gml 5 okenTM r,~1; A, ; My 1 -1
% {9? - G M, {(uzr); moe 42 ]M_ (e2e) 22 _
e LOE? S " A I"O<+§>gv‘o
Y\e%ll.z,l‘k\e, 95/3\"0 andd D & /v, termg nRAV  p, = R,
s G M )
Y = (3, -%) ¢ -0




é +wz§ =0

~4
2% fos = 2w MR

I

_ 12
= 2% Tyl [, -4
3 -2 -3 _
= 2% L Mot [ (30 -4y (4w s )]

Q = - \/é—/go

~ Cen b
Z (tl (A% = é (l"o> e. ;
DZ ~ R ( i _ R0 ‘}o> D__%
9 vt % Po 1970
2
Zlo = G" MY‘O/r\o
é‘ = O ut (40 = O
bouvwlav«y conAl Eions
centev J <& /ara =0
“Sv\\mcaceu 3 |’> = ... Q,g,.

R3/2' [C’ (3&'—11-1.(.>1

-12

— -1/2 -{j2
2% S [ewe (37 -w)/3 ]

= 06 A / V3N, -

L"WRZP = GMatMM/RZ

M, R, D€y, - (4-3M) 3

Z(t, ) = ..

-1/2

0



(a)
|f 2! J
{b)
E{x)
{c)
L !
0 X — 2!

Fig. 18.1. (a) A rope of length 2/ is fastened at both ends. It is free to oscillate in the
center. It has a fundamental frequency v, for a standing wave with nodes only on both
ends. (b) The first overtone with frequency v, for standing waves has a node in the
center of the rope and the maximum amplitude at distance d = / from the walls. (c) The
second overtone mode for standing waves has two nodes at distance d = $/ from the
walls and maximum amplitude in the center and at distance d = Y from the walls.
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Fig. 18.2. The eigenfunctions &(x) are shown as calculated f{or a (hypothetical)
homogeneous density star. The amplitudes must be zero at the center. From Rosseland
(1949).
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Fig. 18.3. The cigenfunctions &(r)/r are shown for a star whose temperature and density
stratification follow a polytrope with index # = 3. For the larger central density. as
compared to the homogeneous star, the amplitudes in the center decrcase strongly. The
index of the harmanics is given in roman numerals. | indicates the fundumental mode. T1
the first harmonic etc. From Rosseland (1949). = P,x L Dy=s/
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Figure 1. Distribution of some observed pulsating variable stars
(dots) on the HR diagram. For convenience some guiding lines from
stellar evolution are included. The heavy line passing from upper left
to lower right shows the ZAMS. Evolutionary paths for some stellar
masses, labeled at the tracks, are included. Common abbreviations
are added to the figure indicating the location of some major families

pulsating va.nable stars
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Fig. 1. Schematic drawing of the tramnsition region.
Adapted from Osaki (1982).
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Fig.39.1. Lines of constant opacity x in the lg P-Ig T plane (all values in cgs). Four arrows are
shown that indicate the direction in which a mass element moves during adiabatic compression. For
the arrows labelled a, b, and d the direction is given by V,q = 0.4. In case a the arrow points in the
direction of increasing «, i.e. the x mechanism has a “driving” effect on pulsations. In cases & and
d the arrows point in the direction of decreasing «, indicating a “damping” (or almost neutral) effect
on pulsation. In case ¢ the direction of the arrow is different from that of the other ones, since V.4 is
here reduced by the second ionization of helium. Because of this reduction, the arrow points in the
direction of increasing « and this ionization region can contribute considerably to the excitation of
pulsations in Cepheids
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Fig.39.2. An opacity surface (< mountain™) for the outer layers of a star as in Fig. 17.5. But this time
the dependence with respect to P (in dyn cm=2%) and T (in K) is shown. The dotted line corresponds
to the stratification inside a Cepheid of 7M. The white areas of the “mountain” indicate regions
which excite the pulsation, the black ones those which damp it. The excitation in the region of
1g T ~ 4.6 is due to the second ionization of helium
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Figure 2.

(a) The “opacity mountain” as obtained from OP calcula-

tions for a X = 0.7, Z = 0.02 composition. The two most prominent
new features (ridges) found in the new opacity data are indicated. The
solid line meandering along the slope of the x-mountain marks the path
traced out by the interior of a 12My ZAMS model. (b) Petersen dia-
gram (P, /P, vs. P,) for population I variables (¢ Sct and double-mode
Cepheids). Dots indicate observed period data. Dashed lines clearly
display the disagreement with the old LAOL data. Solid lines show
the results of Moskalik et al. (1992) (lower right) and of Christensen-
Dalsgaard (1993)(upper left), both based on OPAL opacity data.
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*jgure 1.  Theoretical instability domains of the 3 Cep and the Slowly
>ulsating B-type Stars in the H-R diagram. Only modes of £ < 2 are
.onsidered. The models are computed with OP tables (S92 mixture,
iee Seaton et al. 1994) for standard composition of X = 0.7, Z =
).02. For comparison we show B Cep stars observed in young open
Justers NGC 3203, NGC 4755 and NGC 6231 (Balona 1994; Balona
% Koen 1994; Heynderickx 1991) and the field SPB stars (Waelkens
1994). From Pamyatnykh et al. (in preparation).
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Figure 2. Opacity k, opacity derivati i t]

- » opacity erivative k.., and differential work
integral dW/dlogT (positive in driving zong) for selected pulsaticrm
models, plotted vs. temperature. Left: 8 Cep star model (M = 12M,
lc;EIL/Lo = 4.27, log Teg = 4.378, X, = 0.13). Right: SPB-star modczi
(M = 4M,, .lo_g.L/L@ = 2.51, logTeg = 4.142, X, = 0.37). Both
models have initial composition of X = 0.7, Z = 0.02. The mod
plotted correspond to £ = 1. ®
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Period

Fig. 18.5. The velocity, radius, pressure and temperature variations for adiabatic
pulsations are shown schematically. Pressure and temperature are highest for the
smallest radius. For excess pressure. the layers are accelerated outwards. For decreased
pressure, gravity pulls inwards. Arbitrary units.

T T T T T T T T B T

~ !nward motion
v \\

.

{c)

AAT ~
7/ N
9 ol——e—_ 2 ~
0 -t — ————— —
q P N 7
7 \\ /,
~
L.ﬂ’ \\—-—/,
! l | ! 1 ! ! 1 | | | |
0 02 04 06 08 10 12 14 16 18 20 22 24
Phase

Fig. 18.8. (a) Adiabatic radius and velocity variations as a function of phase for a
Cepheid (arbitrary scale). Negative velocities mean outward motion, positive velocities
falling motion. (b) The adiabatic temperature variations AT, (solid line). Maximum
AT,4 occurs for minimum radius, and vice versa. In those layers where « is increasing
with increasing T and Py, excess heating occurs during phases of positive AT and AP,
(Excess cooling occurs for negative AT and AP,.) (c) The excess temperature increase,
AAT is shown schematically. It increases throughout the phase of positive AT and AP,.
Only after expansion has proceeded beyond the equilibrium radius does AAT actually
decrease. In (b) the final AT = AT, + AAT is shown schematically as a function of time

(dashed line). AP, < AT is larger during expansion phases than during contraction
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Fig. 16.4. The observed variations of the apparent visual magnitudes, the
effective temperatures, the spectral types, and the radial velocities for 6 Cephei
are shown as functions of phase. At the bottom the changes in the radius are
shown, which can be obtained by integrating over the pulsational radial
velocities (the stellar velocity has to be subtracted from the observed velocities).
It can be seen that the radius is nearly the same for maximum and minimum
brightness. (From W. Becker 1950.)
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Fic. 3-The Cepheid Manifold: Projections of the PLC plane (shown shaded) onto the three principal coordinate svstems (]ur?n'n(')sit,\' flog L)
increasing up, period [log P) increasing to the right. and color [log T} becoming bluer/hotter to the lo\f'er lcf.t).. The.bacl.(\v;j:r(l projection ontf) the
(log L. log P) plane gives the period-luminosity relation. Projecting to the left gives the position of the instability strip within the color-mugr‘utude
diagram. Projecting down gives the period-color relation. EC is a line of constant luminosity. EF is 2 line of constant color. AD and BC are lines of

constant period.
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Fig. 16.5. The light curves for the three Bailey types of RR Lyrae stars are
shown. Types a and b only differ in amplitude. The ¢ RR Lyraes show a
nearly sinusoidal light variation. (From Ledoux & Walraven 1938.)
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Fig. 16.6. We show the relation between amplitude and period for the three
types of RR Lyrae stars. The ¢ types have the shortest periods and the lowest
amplitudes. They are clearly distinct from the a and b types. (From Ledoux &

Walraven 1958.)
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Fig. 5. Period-luminosity relations in K band. The lines have the same
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»¢ Fig. 13 Geometrical projection of stellar ve-
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